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Abstract

Let m ≥ 1 and consider the product of m independent n× n Gaussian
matrices W = W1 . . .Wm, each Wi with i.i.d. normalised N (0, n−1/2)
entries. It is shown in [PŻ11] that the empirical distribution of the squared
singular values of W converges to a deterministic distribution compactly
supported on [0, um], where um := (m+1)m+1

mm . This generalises the well-
known case of m = 1, corresponding to the Marchenko-Pastur distribution
for square matrices. Moreover, for m = 1, it was first shown by [Gem80]
that the largest squared singular value almost surely converges to the right
endpoint (aka “soft edge”) of the support, i.e. s21(W)

a.s.−−→ u1. Herein, we
present a proof for the general case s21(W)

a.s.−−→ um when m ≥ 1. Although
we do not claim novelty for our result, the proof is simple and does not
require familiarity with modern techniques of free probability.

Theorem. Let m ≥ 1. Consider W1, . . . ,Wm ∈ Rn×n be independent Gaussian
matrices with i.i.d. N (0, n−1/2) entries. Then, almost surely,

s21(W1 . . .Wm)
n→∞−−−−→ um. (1)

Proof. We denote by W the product W1 . . .Wm. That almost surely

lim
n→∞

s21(W) ≥ um

is straightforward. Suppose otherwise that s21(W) = maxi s
2
i (W) < um for

infinitely many n and there will be a subsequence of empirical distributions
whose supports are strictly contained in [0, um], which is a contradiction. Now
we must show that

lim
n→∞

s21(W) ≤ um

*Equal contribution.
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almost surely. Fix z > um. Following Geman’s strategy, we demonstrate
P
(
limn→∞ s21(W) ≥ z

)
= 0 using Borel-Cantelli lemma. For any k ≥ 1,

P
(
s21(W) ≥ z

)
= P

((s21(W)

z

)k ≥ 1
)
≤ E

((s21(W)

z

)k)
by Markov’s inequality. Therefore, to exhibit an almost sure convergence, it
suffices to show ∑

n

E
((s21(W)

z

)k)
< ∞,

for some k. We will shortly see how we can carefully choose k = kn to make
the above sum converge. Namely, the remainder of the proof is devoted to
establishing

∑
n

E
((s21(W)

z

)kn
)
< ∞, (2)

where,

kn = ⌈w log n⌉,

and

w >
3

log(z/um)
.

We may simply bound a term of the series in (2) by the kn-th moment of the
empirical (non-limiting) distribution µn of the squared singular values of W, i.e.

E
((

s21(W)
)kn

)
≤ E

( n∑
i=1

(
s2i (W)

)kn
)

= nE
( 1

n

n∑
i=1

(
s2i (W)

)kn
)

= nG(m,n, kn),

where G(m,n, kn) is the kn-th moment of µn. We borrow the computation of
G(m,n, kn) from [AIK13, Eq. (58)], where it is worked out for the general case
of the product of rectangular Gaussian matrices.1 The calculation from [AIK13]

1In the case where all matrices are square, it is well known that G(m,n, k) converges to
the Fuss-Catalan number,

FCm(k) :=
1

mk + 1

(mk + k

k

)
,

for any fixed k and m; see [PŻ11].
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provides us with the following non-asymptotic formula, valid for any integer
k ≥ 1,

nmk+1G(m,n, k) =

n−1∑
i=0

(−1)1+i
∏n−1

j=0 (j − k − i)

i!(n− 1− i)!k
×

(Γ(k + i+ 1)

Γ(i+ 1)

)m

,

which can be further simplified as,

nmk+1G(m,n, k) =
1

k!

n−1∑
i=n−k

(−1)n+1+i
( (k + i)!

i!

)m+1
(

k − 1

k + i− n

)

=
1

k!

k−1∑
j=0

(−1)k+1−j
( (n+ j)!

(n+ j − k)!

)m+1
(
k − 1

j

)

=
1

k!

k−1∑
j=0

(−1)k+1−j

(
k − 1

j

)
×

(
(n+ j)(n+ j − 1) . . . (n+ j − k + 1)

)m+1

=
nk(m+1)

k!

k−1∑
j=0

(−1)k+1−j

(
k − 1

j

)
×

(
(1 +

j

n
)(1− 1

n
+

j

n
) . . . (1− k − 1

n
+

j

n
)
)m+1

.

We now introduce βr as the coefficient of xr in the expansion of the polynomial
P (x) :=

∏k−1
i=0 (1−

i
n + x)m+1. Let R be the multiset of the k(m+ 1) roots of P

(counted with multiplicity), then each βr can be explicitly written as,

βr =
∑
S⊆R

|S|=k(m+1)−r

∏
i∈S

(−i).

Provided k ≤ n, all roots of P are negative with magnitude in [1 − k−1
n , 1].

Therefore, for all 0 ≤ r ≤ k(m+ 1), we have(
k(m+ 1)

r

)(
1− k − 1

n

)k(m+1)−r ≤ βr ≤
(
k(m+ 1)

r

)
,

which yields the asymptotic equivalence2

βr ∼
(
k(m+ 1)

r

)
, (3)

2In the following, we write f(n) ∼ g(n) whenever limn→∞ f(n)/g(n) = 1.
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whenever k2 = o(n). Substituting back into the last formula, we get

nmk+1G(m,n, k) =
nk(m+1)

k!

k−1∑
j=0

(−1)k+1−j

(
k − 1

j

) k(m+1)∑
r=0

βr

( j
n

)r

=
nk(m+1)

k!

k(m+1)∑
r=0

n−rβr

k−1∑
j=0

(−1)k+1−j

(
k − 1

j

)
jr.

The above alternating sums are known to be equal to Stirling numbers of the
second kind

{
n
k

}
, defined as the number of ways to partition a set of n objects

into k non-empty subsets. They are given by{
n

k

}
=

1

k!

k∑
i=0

(−1)k−i

(
k

i

)
in.

Thus, we can rewrite our original quantity as

nmk+1G(m,n, k) =
nk(m+1)(k − 1)!

k!

k(m+1)∑
r=0

n−rβr

{
r

k − 1

}
.

By definition, it is clear that
{
n
k

}
= 0 for k > n, therefore,

nmk+1G(m,n, k) =
nk(m+1)

k

k(m+1)∑
r=k−1

n−rβr

{
r

k − 1

}
. (4)

We now move on to showing that for our specific choice of k = kn, the latter
sum is asymptotically dominated by its first term. To this end, we demonstrate
that each term in the sum is dominated by the term immediately preceding it.
It is sufficient to show, for any k − 1 ≤ r ≤ km+ k − 1,

βr+1

{
r+1
k−1

}
n−(r+1)

βr

{
r

k−1

}
n−r

< Cn−ε, (5)

for some ε > 0 and C independent of n.
First, observe the recurrence relation satisfied by Stirling numbers of the

second kind, which immediately gives,

{
r+1
k−1

}{
r

k−1

} = k − 1 +

{
r

k−2

}{
r

k−1

} . (6)

Among other properties, Stirling numbers of the second kind are shown in [Lie68]
to be logarithmically concave, meaning,{

n

k

}2

≥
{

n

k + 1

}{
n

k − 1

}
,
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for any k = 2, . . . , n− 1. This directly implies that,{
n

k−1

}{
n
k

} ≤
{
n
k

}{
n

k+1

} ≤ · · · ≤
{

n
n−1

}{
n
n

} =

(
n

2

)
.

Back to our problem, we can thus bound the ratio in Eq. (6) as follows:{
r+1
k−1

}{
r

k−1

} = k − 1 +

(
r

2

)
≤ 1

2
r(r + 1).

To bound the ratio βr+1

βr
, since kn = ⌈w log(n)⌉ satisfies k2n = o(n), we can use

Eq. (3) to write

βr+1

βr
∼

(
k(m+1)
r+1

)(
k(m+1)

r

) =
k(m+ 1)− r

r + 1
< m+ 1.

Altogether,

n−(r+1)βr+1

{
r+1
k−1

}
n−rβr

{
r

k−1

} < n−1m+ 1

2
(r + 1)2.

Therefore, if we restrict the growth of r (and hence that of kn) with n such that
r + 1 < n(1−ε)/2, we get

n−(r+1)βr+1

{
r+1
k−1

}
n−rβr

{
r

k−1

} <
m+ 1

2
n−ε, (7)

which is sufficient to prove what needs to be shown. Our specific choice for
kn = ⌈w log(n)⌉ satisfies this constraint.

Having proven that each term in the sum in Eq. (4) is dominated by the
preceding one, this sum can be effectively approximated by its first term, i.e.

nmkn+1G(m,n, kn) =
nkn(m+1)

kn

kn(m+1)∑
r=kn−1

n−rβr

{
r

kn − 1

}

=
nkn(m+1)

kn
n−(kn−1)βkn−1

(
1 + o(1)

)
= nmkn+1 βkn−1

kn

(
1 + o(1)

)
,

or simply

G(m,n, kn) =
βkn−1

kn

(
1 + o(1)

)
.
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Given that kn → ∞ as n grows, we can use Stirling’s approximation formula to
get

βkn−1

kn
∼ 1

kn

(
kn(m+ 1)

kn − 1

)
=

(
kn(m+ 1)

)
!

kn!(mkn + 1)!

∼
√
2πkn(m+ 1)

√
2πkn

√
2π(mkn + 1)

(
kn(m+ 1)

)kn(m+1)

kkn
n (mkn + 1)knm+1

∼
√

m+ 1

2πm3

ukn
m

k
3/2
n

. (8)

Ultimately,

E
((

s21(W)
)kn

)
≤ nG(m,n, kn)

= n
βkn−1

kn

(
1 + o(1)

)
=

√
m+ 1

2πm3

n

k
3/2
n

ukn
m

(
1 + o(1)

)
.

Substituting back in the Borel-Cantelli sum in (2), it remains to show that∑
n

n

k
3/2
n

(um

z

)kn

< ∞

for our choice of kn = ⌈ 3
log(z/um) log n⌉. Precisely, since z/um > 1,

log

[
n

k
3/2
n

(um

z

)kn

]
= log n− 3

2
log kn + kn log

(um

z

)
≤ log n+ kn log

(um

z

)
= log n− kn log

( z

um

)
≤ log n− 3 log n

log(z/um)
log

( z

um

)
= −2 log n,

hence the series converges and the proof is complete.
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