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Abstract

Multiple Instance Learning (MIL) models have proven effective for cancer prognosis from
Whole Slide Images. However, the original MIL formulation incorrectly assumes the patches
of the same image to be independent, leading to a loss of spatial context as information flows
through the network. Incorporating contextual knowledge into predictions is particularly
important given the inclination for cancerous cells to form clusters and the presence of
spatial indicators for tumors. State-of-the-art methods often use attention mechanisms
eventually combined with graphs to capture spatial knowledge. In this paper, we take a
novel and transversal approach, addressing this issue through the lens of regularization.
We propose Context-Aware Regularization for Multiple Instance Learning (CARMIL), a
versatile regularization scheme designed to seamlessly integrate spatial knowledge into any
MIL model. Additionally, we present a new and generic metric to quantify the Context-
Awareness of any MIL model when applied to Whole Slide Images, resolving a previously
unexplored gap in the field. The efficacy of our framework is evaluated for two survival
analysis tasks on glioblastoma (TCGA GBM) and colon cancer data (TCGA COAD).

1 Introduction

The digitization of histopathology Whole Slide Images (WSIs) and the development of deep
learning methods has lead to promising computational methods for cancer prognosis. One
computational challenge is the large size of WSIs, of the order of 100, 000× 100, 000 pixels.
Processing images of such size with a deep neural network directly is not possible with the
GPUs commonly available. Overcoming this problem, previous work proposes to tessellate
each WSI into thousands of smaller images called tiles and global survival prediction per
slide is obtained in two steps. The tiles are first embedded into a space of lower dimension
using a pre-trained feature extractor model, and a MIL model is trained to predict survival
from the set of tiles embeddings of a WSI (Herrera et al., 2016).

One limitation of MIL is the assumption that tiles from the same WSI are independent
(Ilse et al., 2018). In particular, MIL models fail to leverage spatial interactions between
tiles and their ordering in a WSI. In contrast, pathologists take into account the spatial
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organization of WSIs in their analysis. To tackle this issue, a correlated variant of MIL has
been proposed in Shao et al. (2021). In practice, interactions between neighboring tiles in
a WSI can be modeled using a graph of tiles. Graph Neural Network (GNN) (Kipf and
Welling, 2016b; Meng and Zou, 2023) and Transformers with local attention (Reisenbüchler
et al., 2022; Fourkioti et al., 2023) were proposed to capture correlations between neighbor-
ing tiles. However, as these correlations are parameterized using more complex architectures
involving a greater number of parameters, the effectiveness of such mechanisms might be
limited by the amount of available training samples. Besides, histopathology datasets usu-
ally contain only up to a few hundred WSIs. By contrast, incorporating spatial correlations
between tiles into the model through regularization has been under-explored in computa-
tional pathology.

In this paper, we introduce the CARMIL framework to enhance the Context-Awareness
of any MIL model, initially agnostic to the spatial context, using Regularization. In
CARMIL, a spatial encoder and a spatial decoder are added between the feature extractor
and the MIL model. In addition, a Context-Aware Regularization (CAR) loss function is
proposed to train the spatial decoder to reconstruct the input graph of tiles. The proposed
spatial encoder aims at distilling the spatial relation between neighboring tiles directly into
the tile embeddings so that any MIL model can exploit this information. To this end, the
spatial decoder and the CAR loss are designed to encourage bringing closer the embeddings
learnt by the spatial encoder for tiles that are spatially close in the original WSI. To the best
of our knowledge, such regularization strategy has so far not been studied in computational
pathology. The nearest related work is the topologically-aware regularization for cancer
blood cell classification introduced by Kazeminia et al. (2023). Yet, this regularization is
based on the 0th order Betti number, which only captures the connected components of the
graph of tiles. Instead, CARMIL aims to reconstruct the entire graph structure.

Our main contributions are three-fold. First, we introduce CARMIL, a Context-Aware
Regularization module based on Graph AutoEncoders that we incorporate into the classical
MIL framework through regularization. Second, we propose DeltaCon, a novel metric to
quantitatively assess the Context-Awareness of any tiles embedding. This metric allows for
a better inspection of how well the embeddings conform with the original spatial arrange-
ment of the tiles within the WSIs. Lastly, we evaluate CAR on a set of benchmark MIL
models for the task of overall survival prediction for glioblastoma and colon cancer. These
models are precisely chosen because they are originally context-independent, and we show
through extensive quantitative and qualitative ablation studies how CARMIL turns them
into Context-Aware models and leads to improved C-index.

2 Methods

2.1 Background: classical MIL framework for risk prediction

In this section, we summarize the main steps of the classical MIL pipeline, that we enhance
with our Context-Aware Regularization in the next section.

Preprocessing. Each WSI is segmented to keep only the tissue and remove the back-
ground (e.g. using the otsu method). The tissue parts are then tessellated into tiles of size
224 × 224 pixels taken at 20X magnitude (0.5µm/pixel) and each WSI is reduced to a set
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Figure 1: Our proposed framework, CARMIL, enhances any MIL model by incorporating
spatial information through Context-Aware Regularization. In CARMIL, tiles
embeddings are finetuned to allow for graph reconstruction by a spatial decoder.

of n tiles of tissue selected at random. A pre-trained feature extractor is then used to map
each tile into a low-dimensional tile feature space of dimension d. This results in a matrix
representation X(i) ∈ Rn×d for the WSI indexed by i.

MIL model. The MIL model fMIL is a parametric model trained to aggregate the tile
features of a WSI and estimate a risk associated with the overall survival of the patient

fMIL : Rn×d −→ R. (1)

The parameters θMIL of the MIL model fMIL are optimized to minimize a survival loss LMIL,
such as the Cox loss. Formally, this corresponds to the optimization problem

min
θMIL

1

N

N∑
i=1

LMIL

(
fMIL(X

(i); θMIL), y
(i)
)
, (2)

where N is the number of training WSIs and y(i) is the overall survival risk of patient
i. Examples of such MIL models are ABMIL (Ilse et al., 2018), Chowder (Courtiol et al.,
2018), and AdditiveMIL (Javed et al., 2022). It is worth noting that the spatial relationships
between tiles are not used by fMIL, since their ordering is random in X(i).

2.2 Context-Aware Regularization (CAR)

We propose a general approach to leverage local spatial context in computational histopathol-
ogy. Our pipeline, which can be applied to any task or MIL model, is depicted in fig. 1.

Graph construction. For each WSI, we build a graph G(i) = (X(i), A(i)) where the
vertices are the tiles features X(i) ∈ Rn×d, as described in the previous section, and A(i) ∈
Rn×n is the adjacency matrix computed based on the euclidean distance between the spatial
coordinates of the tiles in the original WSI for a given number k of nearest neighbors.

Context-Aware Regularization. To embed the spatial structure of the WSI into the
tiles features, we introduce a spatial encoder fE of parameters θE and a spatial decoder fD
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of parameters θD before the classical MIL model fMIL of (2) as illustrated in Fig. 1

fE : Rn×d × Rn×n −→ Rn×dE

(X,A) 7→ Z,

fD : Rn×dE −→ Rn×n

Z 7→ Â.

(3)

Here, the goal of fE is to distill the spatial information contained in an input WSI
graph G = (X,A) into tiles features X, resulting in a new low-dimensional Context-Aware
embedding Z ∈ Rn×dE of the WSI. To achieve this goal, fD aims at reconstructing the input
adjacency matrix A from Z during training while, concurrently, fMIL aims at predicting the
patient risk from Z. Formally, this corresponds to adding a Context-Aware Regularization
term LCAR to the training optimization problem of classical MIL (2):

min
θMIL,θE ,θD

1

N

N∑
i=1

(
(1− β)LMIL

(
fMIL(Z

(i); θMIL), y
(i)
)
+ βLCAR

(
fD(Z

(i); θD), A
(i)
))

(4)

where the same notations as in (2) are used and,{
Z(i) = fE

(
G(i); θE

)
,

LCAR(Â, A) =
1
n2

∑
p,q

(
Apq log(Âpq) + (1−Apq) log(1− Âpq)

)
.

(5)

By reformulating the training problem as a joint optimization task, the models’ parameters
are obtained by simultaneously solving a pair of objectives, which may initially appear
orthogonal. When β = 0, the method boils down to the classical MIL pipeline, whereas
β = 1 reduces the task to encoding the spatial context only as in a Graph AutoEncoder
(GAE) (Kipf and Welling, 2016a). Note that the spatial decoder fD is not required at
inference.

The spatial encoder fE and spatial decoder fD are obtained by stacking up, respectively
ℓE and ℓD, graph convolutional network (GCN) layers:

GCN
(
(X,A); θ

)
:= A ReLU(X)W θ, (6)

where W θ is a learnable weight matrix and the matrix A may be preprocessed. If we denote
the composition of a function f by itself t times as f◦t, then,

Z = fE(G; θE) := GCN◦ℓE (G; θE), UD(Z) = GCN◦ℓD
(
(Z,A); θD

)
. (7)

Similarly to a GAE, the last layer of the spatial decoder is an inner-product decoder
with a sigmoid function σ, that aims at reconstructing the input adjacency matrix A,

Â = fD(Z; θD) := σ
(
UD(Z)UD(Z)T

)
. (8)

2.3 DeltaCon for quantitative measure of Context-Awareness

Reporting task-related scores alone is not enough to quantify the amount of Context-
Awareness in a tiles embedding space. To overcome this issue, we propose a novel Context-
Awareness metric based on DeltaCon (Koutra et al., 2013).

Let Ẑ ∈ Rn×p be tiles descriptors, we denote A(Ẑ) ∈ Rn×n the adjacency matrix based
on the k nearest neighbors for the euclidean distance between the components of Ẑ. This
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is different from A, defined in sec. 2.2, that is based on the distance between the spatial
coordinates of the tiles. Ẑ can be any representation of the tiles, here it will either be the
features X or the embeddings Z as defined in sec. 2.2.

We propose to use the DeltaCon similarity between the adjacency matrix based on
tiles descriptors A(Ẑ) and the adjacency matrix based on the spatial coordinates A for
the same WSI as our metric of Context-Awareness. Since we have directed graphs and
the adjacency matrices A and A(Ẑ) are non-symmetric, we propose this extension of the
original DeltaCon similarity

DeltaCon
(
A(Ẑ), A

)
=

1

1 + ||S(A(Ẑ))− S(A)||F
, S(A) := (I+ ϵ2D − ϵA)−1, (9)

where D := Din+Dout, where Din, resp. Dout, is the diagonal matrix counting the incoming,
resp. outcoming, edges and ||.||F denotes the Frobenius norm.

Intuitively, S(A) ∈ Rn×n is a matrix capturing the degrees of similarity between all tiles
when one travels in the original graph corresponding to A. Direct neighbors are the most

similar tiles, followed by neighbors of neighbors, and so on. As a result,DeltaCon
(
A(Ẑ), A

)
is close to 1 when the neighbors in the tiles descriptors space and the spatial coordinates
are almost the same and it smoothly decreases towards 0 when those neighbors become
dissimilar between the tiles representations and the spatial coordinates.

3 Implementation details

3.1 Datasets for survival prediction using whole slide images

Glioblastoma data. We used H&E slides of patients with glioblastoma from the datasets
TCGA GBM (Brennan et al., 2013; McLendon et al., 2008) and TCGA LGG (The Cancer
Genome Atlas Research Network, 2015).We filtered cases according to the latest WHO
classification for gliomas (Louis et al., 2021). See App. A for more details.

Colon cancer data. We used H&E slides of patients with colon adenocarcinoma from
TCGA. The TCGA COAD dataset contains a total of 431 cases from 24 centers.

3.2 Evaluation

All models were trained and evaluated on TCGA COAD and TCGA GBM using 5-fold
nested cross validation (Bengio, 2012) to allow for hyperparameters tuning and assess the
generalisation independently on those datasets. Three repeats were used in the inner loop,
corresponding to three different random initializations of the MIL or CARMIL models. As
a result, metric evaluation on each of the 5 test splits was performed using an ensemble of
15 models (5 inner validation splits and 3 repeats). Ensembling was performed by averaging
the risk output of the models of an ensemble. In all the tables, we show the mean (std)
C-index for OS obtained using 5-fold nested cross validation. The best results are in bold.

3.3 Preprocessing

For tissue segmentation, a 2D U-net (Ronneberger et al., 2015) trained on a pancancer
dataset of manually annotated WSIs is used. Tile features of dimension d = 768 are
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Model TCGA COAD TCGA GBM

MeanPool 0.637 (0.02) 0.621 (0.02)
CARMeanPool (ours) 0.640 (0.05) 0.640 (0.03)

ABMIL (Ilse et al., 2018) 0.635 (0.06) 0.622 (0.03)
CARABMIL (ours) 0.642 (0.05) 0.635 (0.02)

Chowder (Courtiol et al., 2018) 0.618 (0.07) 0.642 (0.02)
CARChowder (ours) 0.666 (0.04) 0.634 (0.02)

AdditiveMIL (Javed et al., 2022) 0.645 (0.04) 0.631 (0.04)
CARAdditiveMIL (ours) 0.648 (0.05) 0.638 (0.02)

MultiDeepMIL (Wibawa et al., 2022) 0.652 (0.05) 0.633 (0.03)
CARMultiDeepMIL (ours) 0.649 (0.04) 0.638 (0.03)

MILTransformer (Shao et al., 2021) 0.633 (0.05) 0.639 (0.02)
CARMILTransformer (ours) 0.664 (0.03) 0.629 (0.03)

Average MIL models 0.637 (0.05) 0.631 (0.03)
Average CARMIL models (ours) 0.652 (0.04) 0.636 (0.03)

Table 1: Mean C-index (std) on OS performance in MIL models with and without CAR.

computed using a state-of-the-art self-supervised model, Phikon, trained on pancancer H&E
slides from TCGA (Filiot et al., 2023). The parameters of Phikon are kept frozen in all our
experiments. The preprocessing is the same for all the models we compare to.

3.4 Deep learning training

The Cox loss was employed in the supervised training of all models, utilizing overall survival
labels. This corresponds to LMIL in eq. (4). The CAR loss, denoted as LCAR in eq. (5), is
applied across all CAR models and we use β = 0.5 in eq. (4) for the total loss accross all
CAR models. The choice of β = 0.5 followed the empirical observation that LMIL and LCAR

have similar range of values during the first epoch of training. Adam optimizer (Kingma
and Ba, 2014) with momentum β1 = 0.9 and β2 = 0.999 is used for training with a learning
rate on the grid {0.001, 0.003, 0.01} for all models. The maximum learning rate value 0.01
was chosen heuristically to be the smallest value on the grid for which most MIL models
diverged during training. The number of training epochs is optimized on the grid {20, 30}.
One NVIDIA Tesla T4 GPU with 16GB of VRAM and 8 Intel(R) Xeon(R) 2.00GHz CPUs
are used for training and inference of each model.

4 Experiments

4.1 Survival prediction performance

In tables 1 and 2, we report the performance of various MIL models for the challenging task
of survival prediction on TCGA COAD and TCGA GBM. In table 1, we compare classical
MIL models, selected for being agnostic to the spatial context, to their performance when
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Model TCGA COAD TCGA GBM

MILTransformer with positional encoding 0.628 (0.07) 0.636 (0.03)
GNN (Li et al., 2018) 0.635 (0.06) 0.635 (0.02)

LaMIL (Reisenbüchler et al., 2022) 0.639 (0.04) 0.640 (0.02)
Average CARMIL models (ours) 0.652 (0.04) 0.636 (0.03)

Table 2: Mean C-index (std) on OS performance comparison of CARMIL methods to state-
of-the art models considering spatial context through their complex architecture.

enhanced with our CAR scheme. In total, CAR improved C-index values by up to 4.8
percentage points (pp) in 9/12 settings and on average the C-index increased by 1.5 pp on
TCGA COAD and 0.5 pp on TCGA GBM. In addition, we compare classical MIL models
enhanced with CAR to state-of-the-art model architectures that were designed specifically
to leverage graphs of tiles. CARMIL models perform similarly or better than these more
sophisticated models in terms of C-index; see table 2. This suggests our CAR method
improves performance by successfully integrating spatial context through regularization.

4.2 Context-Awareness performance

In this section, we compile evidence supporting the successful injection of spatial information
in the proposed CAR models and its associated performance benefits. First, we assess
whether CAR models genuinely exploit the input graph for their predictions. To this end,
we perturb the graph at inference time by randomly shuffling all the off-diagonal terms of
the adjacency matrix A. If the CAR models were to fail to exploit the graph structure, this
disruption would not impact their performance. However, the results reported in table 3
indicate that graph shuffling leads to a degradation in the model’s performance, showcasing
that the graph structure is indeed used in the model’s decision-making process.

Secondly, we assess the Context-Awareness of trained CARMIL models compared to the
feature extractor, using the DeltaCon metric that we defined in sec. 2.3. For each WSI,
the adjacency matrix computed in the embedding space learnt by the spatial encoder of
fig. 1 is compared to the original adjacency matrix that accounts for the spatial arrangement
of the tiles within the slide. The DeltaCon provides us with a score between 0 and 1.
A higher DeltaCon score indicates a higher degree of spatial consistency in the learnt
embedding space as it implies that the arrangement in the embedding space closely aligns
with the original spatial organization within the slide. We average this slide-level score
across the whole TCGA COAD and GBM datasets, see table 4. In app. B.4, we showcase
an example of a WSI illustrating how the embeddings provided by CARMIL encoders are
more spatially consistent than the original features. Moreover, in fig. 2, we can clearly see
how the spatial encoders implement more Context-Awareness than the feature extractor
(dotted lines). Indeed, DeltaCon is almost always greater for CARMIL models than for
the feature extractor. Therefore, these findings confirm the successful injection of spatial
knowledge resulting from the CAR. Additionally, we explored the relationship between
spatial information incorporated by the spatial encoder and C-index performance. In TCGA
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Figure 2: Spatial information retained in CARMIL models with C-index performance.
Context-Awareness is quantified using DeltaCon similarity between A and
A(Z); see sec. 2.3. Each point represents an ensemble of CARMIL models
from nested cross-validation, with filled areas indicating one standard deviation
around the mean. The vertical dotted line shows the average Context-Awareness
in the original features.

COAD, the performance seems to correlate with the level of Context-Awareness, potentially
providing insights into colon cancer. However, in TCGA GBM, it is uncertain whether
adding spatial elements improves performance, and understanding how Context-Awareness
influences overall performance remains an open question.

5 Conclusion

The MIL framework fails to leverage spatial interaction and organization of tiles in WSIs,
potentially limiting prognostic model performance. In this work, we proposed to tackle this
issue by injecting spatial knowledge into the traditional MIL framework exclusively through
the prism of regularization. We introduced CARMIL, a method to embed spatial relations
between tiles directly into tile features. This addition mimics the pathologist’s considera-
tion of spatial arrangement in slide-level prognosis. We evaluated our method on survival
prediction for colon cancer and glioblastoma, showing improved performance and revealing
performance declines when spatial context is disregarded. We also introduced a metric for
quantifying Context-Awareness, hoping to help researchers assess spatial consistency more
systematically. Lastly, we discussed in App. C the influence of certain parameters on our
method, but we did not investigate the impact of the feature extractor on overall perfor-
mance. The relationship between model robustness and Context-Awareness remains an
open question, suggesting avenues for future research.
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TCGA COAD TCGA GBM

Model Original Shuffled Original Shuffled

CARMeanPool 0.640 (0.05) 0.641 (0.04) 0.640 (0.03) 0.631 (0.02)
CARABMIL 0.642 (0.05) 0.643 (0.05) 0.635 (0.02) 0.629 (0.01)
CARChowder 0.666 (0.04) 0.661 (0.04) 0.634 (0.02) 0.613 (0.01)

CARMultiDeepMIL 0.649 (0.04) 0.651 (0.05) 0.638 (0.03) 0.630 (0.02)
CARAdditiveMIL 0.648 (0.05) 0.656 (0.05) 0.638 (0.02) 0.633 (0.02)

CARMILTransformer 0.664 (0.03) 0.633 (0.04) 0.629 (0.03) 0.607 (0.02)

Average CARMIL 0.652 (0.04) 0.648 (0.05) 0.636 (0.03) 0.624 (0.02)

Table 3: Ablation of CARMIL models performance with and without shuffling the input
graphs during inference after training with unperturbed graphs. This measures
the contribution of the spatial Context-Awareness to the C-index.

Appendix A. Glioblastoma WHO 2021 classification

The WHO 2021 classification defines glioblastoma as IDH-wild type and H3-wild type brain
tumor with at least one of the following features: necrosis and/or microvascular prolifera-
tion, TERT promoter mutation, EGFR amplification, or concomitant gain of chromosome 7
and loss of chromosome 10. We will refer as TCGA GBM to those glioblastoma cases from
the datasets TCGA GBM and TCGA LGG after reclassification. TCGA GBM contains 352
cases from 18 centers.This change of classification of glioblastoma has been shown to have
a negative impact on the prognostic value of previously published biomarkers (Zakharova
et al., 2022). Therefore, it is clinically important to evaluate previous and new prognostic
models on glioblastoma using the new WHO classification.

Appendix B. Reproducibility

B.1 Construction of the spatial adjacency matrix A

Each WSI G = (X,A) consists of a set of n tiles. For each tile p, we keep track of its spatial
coordinates in the 2D plane formed by the tissue region, cp = (xp, yp), in addition to the
d-dimensional features vector up produced by the feature extractor for that tile. We thus
compute the gaussian kernel, ∀p ̸= q,

Kpq = exp

(
−||cp − cq||2

2

)
,

and we set the diagonal to 0. Provided k the number of neighbors, we select the k nearest
neighbors for each node based on the similarity matrix K. The adjacency matrix A is
defined such that Apq equals Kpq if tile q is one of the nearest neighbors of tile p, and 0
otherwise.

12
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B.2 Construction of the adjacency matrix Ã in the embedding space

Adjacency matrices in the embedding space are used for the evaluation of Context-Awareness
using DeltaCon.

Consider training of our model complete and the final parameters to have converged
to θMIL, θE , θD. Given a WSI, represented as G = (X,A), our spatial encoder returns a
lower dimensional vector Z = fE(G; θE) ∈ Rn×dE . Observe that Zp is the dE-dimensional
embedding for tile p. Based on this vector, we construct an adjacency matrix Ã, following
the same principle as before, but this time based on the affinity between embeddings rather
than using the spatial coordinates of the tiles, namely, ∀p ̸= q,

K̃pq = exp

(
−||Zp − Zq||2

2

)
,

and we set the diagonal to 0. We similarly pick the k nearest neighbors for each tile and we
construct the adjacency matrix Ã, that we refer to as the adjacency matrix in the embedding
space. Therefore, Ãpq is the affinity between the embeddings of the tiles p and q.

B.3 Computation of DeltaCon

Observe that both adjacency matrices, A and Ã, are non-symmetric. Indeed, they are
derived by taking the k-nearest neighbors of each node in the kernel matrices K and K̃,
which is an inherently non-symmetric operation. In simple words, tile i can be connected to
tile j, but i is not necessarly a neighbor of j, meaning the induced graphs are directed. In
Koutra et al. (2013), the authors introduce a proxy function defined for undirected graphs
with symmetric adjacency matrix A and degree matrix D as

S(A) := (I+ ϵ2D − ϵA)−1. (10)

We extend this definition to directed graphs by considering a non-symmetric adjacency
matrix A and a degree matrix that accounts for the number of edges entering or leaving
each node. Namely, considering D := Din + Dout, where Din, resp. Dout, is the diagonal
matrix counting the incoming, resp. outcoming, edges, then we can refer back to eq. (10)
to generalize the definition of DeltaCon similarity between directed graphs. Given A and
Ã, as described in sec. B.1 and B.2, and their associated degree matrices D and D̃, we can
now quantitatively assess the amount of spatial information, or Context-Awareness, of any
CARMIL model by computing,

DeltaCon(A, Ã) :=
1

1 + ||S(A)− S(Ã)||F
. (11)

In table 4, we assess the Context-Awareness of the best-performing CARMIL model from
the 15 models evaluated through nested cross-validation, see sec. 3.2. For each WSI in each
dataset, we first compute the spatial adjacency matrix A with k = 8 nearest neighbors,
as in sec. B.1. Then, for all rows in table 4 except the first, the matrix Ã is computed
based on the embedding vector Z from the model’s encoder after training, also with k = 8,
see sec. B.2. For the first row, the adjacency matrix Ã is based on the feature vector X
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Table 4: Correlation between the Deltacon similarity that quantifies the Context-
Awareness of MIL models and their associated C-index performance.

TCGA COAD TCGA GBM
Model DeltaCon C-index DeltaCon C-index

Feature extractor 0.1061 (0.0041) 0.1092 (0.0047)

CARMeanPool 0.1202 (0.0042) 0.640 (0.05) 0.1089 (0.0034) 0.640 (0.03)

CARABMIL 0.1311 (0.0067) 0.642 (0.05) 0.1105 (0.0041) 0.635 (0.02)

CARChowder 0.1306 (0.0065) 0.666 (0.04) 0.1115 (0.0039) 0.634 (0.02)

CARAdditiveMIL 0.1196 (0.0041) 0.648 (0.05) 0.1105 (0.0040) 0.638 (0.02)

CARMultiDeepMIL 0.1283 (0.0055) 0.649 (0.04) 0.1117 (0.0038) 0.638 (0.03)

CARMILTransformer 0.1233 (0.0047) 0.664 (0.03) 0.1094 (0.0047) 0.629 (0.03)

generated by the feature extractor. The similarity score given by eq. (11) is averaged across
all slides within each dataset to produce the table’s values, along with the C-index mean
performance of the corresponding model. In fig. 2, we report these same results in a scatter
plot to better illustrate two important findings. First, by comparing the scores from the
feature extractor to the other models on both datasets, we confirm the successful injection
of Context-Awareness into our CARMIL models. As a side note, it is worth mentionning
here that, even though DeltaCon lies between 0 (indicating very dissimilar graphs) to 1
(for identical graphs), the interpolation between these extremes does not seem to evenly
spread out within the interval [0, 1]. This would explain the small variations in our table
4. In fact, as evidenced in the tables of results from the original paper Koutra et al.
(2013), most values are closer to 0 than 1. Nevertheless, for our analysis, only the relative
ordering of these quantities is key in proving the enhanced spatial awareness provided by
our method. Second, we try to correlate gains in performance with the amount of added
Context-Awareness in the CARMIL model. Conclusions such as the more spatial knowledge
is incorporated, the better the model perform, are rather difficult to draw.

B.4 Qualitative assessment of Context-Awareness in CARMIL models

Consider a WSI, from which n tiles are sampled. Passing this slide to our feature extractor,
we get a vector X ∈ Rn×d. For each tile, we compute the mean of the eucliden distance
between the d-dimensional features of this very tile with the features of all its k = 8 spatial
nearest neighbors within the slide. This results in a vector Y features ∈ Rn that accounts
for how well aligned the features learnt by the feature extractor conform to the spatial
arrangement of the slide. If the features exactly reflect the spatial context of each tile, the
coefficients in the vector Y features should be fairly constant and of low magnitude. Their
variations are shown in fig. 3a, where we superposed the underlying slide with the values
of Y features. Next, we pass these features through our CARMIL encoder at inference time,
following the same procedure but using the embedding vector Z ∈ Rn×dE – with the same
notation as before. This results in a vector Y CARMIL ∈ Rn. We report the coefficients in
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(a) Phikon (Filiot et al., 2023) (b) CARABMIL spatial encoder

Figure 3: Heatmap of mean euclidean distances between the representation of each tile
given by (a) Phikon, the feature extractor, and (b) CARABMIL spatial encoder
to its 8 spatial nearest neighbors. All mean distances were scaled together to
[0, 1]. The WSI is taken from TCGA GBM.

fig. 3b. To obtain similarly scaled heatmaps, we jointly normalize the coefficients of both
matrices by their maximum value, ensuring all their coefficients range between 0 and 1. Note
that both tile features X and tile embeddings Z are first normalized to have magnitude 1,
ensuring a fair comparison that mitigates high-dimensional concentration effects on vector
norms.

From fig. 3, we can clearly see that the embeddings generated by the CARMIL encoder
evolve smoothly in the 2d plane, resulting in a uniformly low heatmap value across the
slide. In comparison, the tile features provided by the feature extractor Phikon exhibit less
alignment with the spatial organization of the tiles, providing another qualitative indication
of the enhanced spatial consideration in CARMIL models.

Appendix C. Discussion on certain parameters

Number of tiles n. The number of tiles n that we randomly select from the tissue region
of each WSI has a significant impact, and we provide an intuitive explanation for this. The
amount of spatial context required to make accurate predictions is inherently tied to the
number of tiles, as it determines the scale at which patterns can be grouped. Moreover, we
observe that different WSIs can vary greatly in size, resulting in a wide range of number of
tiles across datasets. Whilst we fixed n regardless of the WSI at stake, it would be a natural
improvement to choose n for each slide in proportion to the original size of the tissue region.

Number of nearest neighbors k. Similar to the number of tiles, it is probably advisable
to choose k, the number of nearest neighbors, in proportion to the number of tiles n, and
subsequently, the size of the WSI. In our experiments, we optimized k across a fixed grid
of values, independent of n.

Number of GCN layers ℓE , ℓD. The number of layers ℓE and ℓD in the spatial encoder
and decoder, as well as the dimensions for the projections they induce were part of our grid
search. We observed that (ℓE , ℓD) = (1, 1) worked best for TCGA COAD and (ℓE , ℓD) =
(2, 2) for TCGA GBM. The dimensions of each layer were also finetuned from a grid of fixed
values, resulting in dE = d as an optimal choice for the spatial encoder and all intermediate
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layers. Besides, we observed that significantly reducing the embedding dimension dE almost
systematically led to a substantial decline in performance.
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